miércoles, 7 de julio de 2010

Conclusión

Con esto podemos concluir que la criptografía utiliza los principios de la mecánica cuántica para garantizar la confidencialidad de la información que se transmite. Las actuales técnicas de la criptografía cuántica nos permiten tener una clave secreta compartida entre dos personas y que es difícil de descifrar por un tercero.

La seguridad de la criptografía cuántica descansa en las bases de la mecánica cuántica, a diferencia de la criptografía de clave pública tradicional la cual descansa en supuestos de complejidad computacional no demostrada de ciertas funciones matemáticas.

Bibliografía

* http://es.wiktionary.org/wiki/criptografía

* http://www.seguridadenlared.org/es/index25esp.html

* http://es.kioskea.net/contents/crypto/crypto.php3

* http://www.govannom.org/seguridad/7-criptografia/439-historia-de-la-criptografia.html

* http://www.uninet.edu/mg/masterges/cinet/Seguridad/Texto/seguridadYPrivacidad/node7.



Aunque parezca mentira la criptografía es tan antigua como la escritura. Es evidente por el hecho de que siempre ha habido dos personas comunicándose y una tercera que podía estar interesado en interceptar y leer esa información sin permiso de los otros. También por la lógica de que si alguien esconde algo debe haber alguien interesado en descubrirlo.

El primer cifrado que puede considerarse como tal se debe a Julio César: su método consistía en sustituir cada letra de un mensaje por su tercera siguiente en el alfabeto. Parece ser que también los griegos y egipcios utilizaban sistemas similares. Civilizaciones anteriores, como la Mesopotamia, India y China también utilizaban sus propios métodos.

La Criptografía cuantica utiliza principios de la mecánica cuántica para garantizar la absoluta confidencialidad de lainformación transmitida.

Sigue siendo el arte o ciencia de cifrar y descifrar información utilizando técnicas matemáticas que hagan posible el intercambio de mensajes de manera que sólo puedan ser leídos por las personas a quienes van dirigidos. Más las máquinas y los numeros (la cuantica) hace que este información sea aún más confidecial mostrandole un reto al que quiera aprenderla o al que intente decrifrarla.

La criptografía cuántica como idea se propuso en la década de los años 1970, pero no es hasta 1984 que se publica el primer protocolo.

Una de las propiedades más importantes de la criptografía cuántica es que si un tercero intenta hacer eavesdropping durante la creación de la clave secreta, el proceso se altera detectándose al intruso antes de que se trasmita información privada. Esto es una consecuencia delprincipio de incertidumbre de Heisenberg, que nos dice que el proceso de medir en un sistema cuántico perturba dicho sistema.

La seguridad de la criptografía cuántica descansa en las bases de la mecánica cuántica, a diferencia de la criptografía de clave pública tradicional la cual descansa en supuestos de complejidad computacional no demostrada de ciertas funciones matemáticas.

La criptografía cuántica está cercana a una fase de producción masiva, utilizando láseres para emitir información en el elemento constituyente de la luz, el fotón, y conduciendo esta información a través de fibras ópticas.

Para todo esto consta de muchos sistemas como:

El algoritmo RSA

Introducido por Ron Rivest, Adi Shamir y Len Adleman del MIT en 1978 el Algoritmo Rivest-Shamir-Adleman (RSA) es el único de los algoritmos de clave pública masivamente utilizados en la actualidad.

Los mensajes son encriptados en bloques que poseen un valor en binario menor o igual que un número n. Es decir en bloques de longitud menor o igual a log2(n). La encriptación y desencriptacion se realiza de la siguiente manera, para un bloque de mensaje M y un mensaje cifrado C:

C = Me mod n

M = Cd mod n = (Me)d mod n = Med mod n

Tanto el emisor como el receptor conocen el valor de n. el emisor conoce el valor de e, y el emisor el valor de d. por lo tanto este es un algoritmo con una clave pública {e,n} y una clave privada {d,n}

Generación de las claves

  • Se seleccionan dos números primos, p y q
  • Se calcula n = p x q.
  • Se calcula Φ(n) = (p-1)(q-1)
  • Se selecciona un entero usando: mcd (Φ(n),e) = 1 y 1 < e < Φ(n)
  • Se calcula d = e-1 mod Φ(n)
  • Clave Pública KU = {e,n}
  • Clave Privada KR = {d,n}

Definiciones previas

Principio de Superposición

Si se piensa al qubit como un electrón en un campo magnético. El spin del electrón puede estar en alineación con el campo, o en estado “spin-up”, o alineado opuestamente al campo, o en estado “spin-down”, el cambio de un estado se logra mediante un pulso de energía, por ejemplo de un láser. Supongamos que se necesita 1 unidad de energía para cambiar de un estado. ¿Que pasa si solo le suministramos la mitad de la energía requerida y aislamos la partícula completamente de las influencias externas? De acuerdo con la ley cuántica la partícula entra en una superposición de estados donde se comporta como si estuviese en ambos estados simultáneamente.

Espín: Momento angular intrínseco de una partícula subatómica (rotación sobre su propio eje). La teoría cuántica indica que el espín sólo puede adoptar dos valores a los que se los denomina “½” y “-½”

Principio de incertidumbre de Heisenberg

La ley o principio de Heisenberg establece que en el mundo subatómico no es posible conocer al mismo tiempo los valores de dos magnitudes diferentes de una partícula elemental, ya que el hecho de medir la primera interfiere con nuestra capacidad de medir la segunda.

Teorema de No Clonación

El teorema de no clonación es un resultado de la mecánica cuántica que prohíbe la creación de copias idénticas de un estado cuántico arbitrario y no conocido. Fue introducido por Wootters, Zurek, y Dieks en 1982, y tiene fuerte implicancia en el campo de la computación cuántica.

El Bit de Shannon o Bit “Clásico”

El bit de Shannon solo puede tomar uno de dos valores posibles que generalmente se denotan con 0 ó 1, pero en ningún caso puede tomar los dos valores a la vez. Estos bits tienen la propiedad de que pueden ser copiados.

El Qubit

En computación cuántica un número de partículas elementales como los electrones o fotones son utilizadas, y sus cargas o su polarización actúan como la representación de 0 y/o 1 a estas partículas se las llama Quantum Bit o Qubit.

En contraste con el bit clásico de Shannon, por el principio de superposición de la física cuántica, el Qubit puede ser 0 y 1 a la vez. Además a diferencia del Bit de Shannon el Qubit no puede ser copiado a causa de el teorema de no clonación.

acerca de la "Cuántica"


La mecánica cuántica, -también física cuántica-, es la ciencia que tiene por objeto el estudio y comportamiento de la materia a escala reducida.

El concepto reducido se refiere aquí a tamaños a partir de los cuales empiezan a notarse efectos como el principio de indeterminación de Heisenberg que establece la imposibilidad de conocer con exactitud, arbitraria y simultáneamente, la posición y el momento de una partícula. Así, los principios fundamentales de la mecánica cuántica establecen con mayor exactitud el comportamiento y la dinámica de sistemas irreversibles. Los efectos sobre la materia son notables en materiales mesoscópicos, aproximadamente 1.000 átomos de composición.

Algunos fundamentos importantes de la teoría son que la energía no se intercambia de forma continua. En todo intercambio energético hay una cantidad mínima involucrada, llamada cuanto.
Si aceptamos el hecho de que es imposible fijar a la vez la posición y el momento de una partícula, renunciamos de alguna manera al concepto de trayectoria, vital en mecánica clásica. En vez de eso, el movimiento de una partícula queda regido por una función matemática que asigna, a cada punto del espacio y a cada instante, la probabilidad de que la partícula descrita se halle en una posición determinada en un instante determinado (al menos, en la interpretación de
la Mecánica cuántica más usual, la probabilística o interpretación de Copenhague). A partir de esa función, o función de ondas, se extraen teóricamente todas las magnitudes del movimiento necesarias.

Aunque la estructura formal de la teoría está bien desarrollada, y sus resultados son coherentes con los experimentos, no sucede lo mismo con su interpretación, que sigue siendo objeto de controversias.

La teoría cuántica fue desarrollada en su forma básica a lo largo de la primera mitad del siglo XX. El hecho de que la energía se intercambie de forma discreta se puso de relieve por hechos experimentales como los siguientes, inexplicables con las herramientas teóricas "anteriores" de la mecánica clásica o la electrodinámica:


* Espectro de la radiación del cuerpo negro, resuelto por Max Planck con la cuantización de la energía. La energía total del cuerpo negro resultó que tomaba valores discretos más que continuos. Este fenómeno se llamó cuantización, y los intervalos posibles más pequeños entre los valores discretos son llamados quanta (singular: quantum, de la palabra latina para "cantidad", de ahí el nombre de mecánica cuántica). El tamaño de los cuantos varía de un sistema a otro.

* Bajo ciertas condiciones experimentales, los objetos microscópicos como los átomos o los electrones exhiben un comportamiento ondulatorio, como en la interferencia. Bajo otras condiciones, las mismas especies de objetos exhiben un comportamiento corpuscular, de partícula, ("partícula" quiere decir un objeto que puede ser localizado en una región especial del Espacio), como en la dispersión de partículas. Este fenómeno se conoce como dualidad onda-partícula.
* Las propiedades físicas de objetos con historias relacionadas pueden ser correlacionadas en una amplitud prohibida por cualquier teoría clásica, en una amplitud tal que sólo pueden ser descritos con precisión si nos referimos a ambos a la vez. Este fenómeno es llamado entrelazamiento cuántico y la desigualdad de Bell describe su diferencia con la correlación ordinaria. Las medidas de las violaciones de la desigualdad de Bell fueron de las mayores comprobaciones de la mecánica cuántica.
* Explicación del efecto fotoeléctrico, dada por Albert Einstein, en que volvió a aparecer esa "misteriosa" necesidad de cuantizar la energía.
* Efecto Compton.

Criptoanálisis


El criptoanálisis consiste en la reconstrucción de un mensaje cifrado en texto simple utilizando métodos matemáticos. Por lo tanto, todos los criptosistemas deben ser resistentes a los métodos de criptoanálisis. Cuando un método de criptoanálisis permite descifrar un mensaje cifrado mediante el uso de un criptosistema, decimos que el algoritmo de cifrado ha sido decodificado.

  • Un ataque de sólo texto cifrado consiste en encontrar la clave de descifrado utilizando uno o más textos cifrados;
  • Un ataque de texto simple conocido consiste en encontrar la clave de descifrado utilizando uno o más textos cifrados conociendo el texto correspondiente;
  • Un ataque de texto simple elegido consiste en encontrar la clave de descifrado utilizando uno o más textos cifrados. El atacante tiene la opción de generarlos a partir de textos simples;
  • Un ataque de texto cifrado elegido consiste en encontrar la clave de descifrado utilizando uno o más textos cifrados. El atacante tiene la opción de generarlos a partir de los textos simples.


Sistemas de Cifrados

Estos se pueden clasificar en:

Sistemas de cifrado simétrico.

Los sistemas de cifrado simétrico son aquellos que utilizan la misma clave para cifrar y descrifrar un documento. El principal problema de seguridad reside en el intercambio de claves entre el emisor y el receptor ya que ambos deben usar la misma clave. Por lo tanto se tiene que buscar también un canal de comunicación que sea seguro para el intercambio de la clave.

Es importante que dicha clave sea muy difícil de adivinar ya que hoy en día los ordenadores pueden adivinar claves muy rápidamente. Por ejemplo el algoritmo de cifrado DES usa una clave de 56 bits, lo que significa que hay 72 mil billones de claves posibles. Actualmente ya existen ordenadores especializados que son capaces de probar todas ellas en cuestión de horas.

Hoy por hoy se están utilizando ya claves de 128 bits que aumentan el "espectro" de claves posibles (2 elevado a 128) de forma que aunque se uniesen todos los ordenadores existentes en estos momentos no lo conseguirían en miles de millones de años.´

Sistemas de cifrado asimétrico.

También son llamados sistemas de cifrado de clave pública. Este sistema de cifrado usa dos claves diferentes. Una es la clave pública y se puede enviar a cualquier persona y otra que se llama clave privada, que debe guardarse para que nadie tenga acceso a ella. Para enviar un mensaje, el remitente usa la clave pública del destinatario para cifrar el mensaje.

Una vez que lo ha cifrado, solamente con la clave privada del destinatario se puede descifrar, ni siquiera el que ha cifrado el mensaje puede volver a descifrarlo. Por ello, se puede dar a conocer perfectamente la clave pública para que todo aquel que se quiera comunicar con el destinatario lo pueda hacer.

Un sistema de cifrado de clave pública basado en la factorización de números primos se basa en que la clave pública contiene un número compuesto de dos números primos muy grandes. Para cifrar un mensaje, el algoritmo de cifrado usa ese compuesto para cifrar el mensaje. Para descifrar el mensaje, el algoritmo de descifrado requiere conocer los factores primos, y la clave privada tiene uno de esos factores, con lo que puede fácilmente descifrar el mensaje.


Es fácil, con los ordenadores de hoy en día, multiplicar dos números grandes para conseguir un número compuesto, pero es muy difícil la operación inversa, Dado ese numero compuesto, factorizarlo para conocer cada uno de los dos números. Mientras que 128 bits se considera suficiente en las claves de cifrado simétrico, y dado que la tecnología de hoy en día se encuentra muy avanzada, se recomienda en este caso que la clave pública tenga un mínimo de 1024 bits. Para un ataque de fuerza bruta, por ejemplo, sobre una clave publica de 512 bits, se debe factorizar un numero compuesto de hasta 155 cifras decimales.

Sistemas de cifrado híbridos.

Es el sistema de cifrado que usa tanto los sistemas de clave simétrica como el de clave asimétrica. Funciona mediante el cifrado de clave pública para compartir una clave para el cifrado simétrico. En cada mensaje, la clave simétrica utilizada es diferente por lo que si un atacante pudiera descubrir la clave simétrica, solo le valdría para ese mensaje y no para los restantes.

Tanto PGP como GnuPG usan sistemas de cifrado híbridos. La clave simétrica es cifrada con la clave pública, y el mensaje saliente es cifrado con la clave simétrica, todo combinado automáticamente en un sólo paquete. El destinatario usa su clave privada para descifrar la clave simétrica y acto seguido usa la clave simétrica para descifrar el mensaje.


Criptografía , como tal


La criptografía es el arte o ciencia de cifrar y descifrar información utilizando técnicas matemáticas que hagan posible el intercambio de mensajes de manera que sólo puedan ser leídos por las personas a quienes van dirigidos.

engloba tanto las técnicas de cifrado, la criptografía propiamente dicha, como sus técnicas complementarias: el criptoanálisis, que estudia los métodos que se utilizan para romper textos cifrados con objeto de recuperar la información original en ausencia de la clave.

Esta se basa en que el emisor emite un mensaje en claro, que es tratado mediante un cifrador con la ayuda de una clave, para crear un texto cifrado. Este texto cifrado, por medio del canal de comunicación establecido, llega al descifrador que convierte el texto cifrado, apoyándose en otra clave, para obtener el texto en claro original. Las dos claves implicadas en el proceso de cifrado/descifrado pueden ser o no iguales dependiendo del sistema de cifrado utilizado.

De la misma manera podemos afirmar que la criptografía se basa en la aritmética. En el caso de un texto, consiste en transformar las letras que conforman el mensaje en una serie de números y luego realizar cálculos con estos números para:

  • modificarlos y hacerlos incomprensibles. El resultado de esta modificación (el mensaje cifrado) se llama texto cifrado, en contraste con el mensaje inicial, llamado texto simple
  • asegurarse de que el receptor pueda descifrarlos.
  • El hecho de codificar un mensaje para que sea secreto se llama cifrado. El método inverso, que consiste en recuperar el mensaje original, se llama descifrado.